
© 2002 Visual Studio Magazine

Fawcette Technical Publications

Issue VSM November 2002
Section Black Belt column
Main file name VS0211BBt2.rtf
Listing file name --
Sidebar file name --
Table file name VS0211BBtb1.rtf
Screen capture file names VS0211BBfX.bmp
Infographic/illustration file names VS0211BBf1,2.bmp
Photos or book scans ISBN 0596003471
Special instructions for Art dept.
Editor LT
Status TE’d3
Spellchecked (set Language to English U.S.) *
PM review
Character count 15,093 + 1,162 online table
Package length 3.5 (I think, due to no inline code/listings)
ToC blurb Learn how to safely grant assemblies

permissions to perform operations with
external entities such as the file system, registry,
UIs, and more.

ONLINE SLUGS
Name of Magazine VSM November 2002
Name of feature/column/department Black Belt column
180-character blurb Learn how to safely grant assemblies permissions to

perform operations with external entities such as the file
system, registry, UIs, and more.

90-character blurb Learn how to safely grant assemblies permissions to
perform operations with external entities.

90-character blurb describing download NA
Locator+ code for article VS0211BB_T
Photo (for columnists) location On file

TITLE TAG & METATAGS

<title>Visual Studio Magazine – Black Belt - Secure Access to Your .NET Code

Configure .NET Code-Access Security
</title>
<!-- Start META Tags -->
<meta name="Category" content=".NET">
<meta name="Subcategory" content="C#, Visual Basic .NET">
<meta name="Keywords" content=".NET, C#, Visual Basic .NET, security permission,
security evidence, security policy, permission sets, evidence, security, security
permission stack walk, custom permission set, code group">
[[Please check these and add/subtract as you see fit.]]
<meta name="DESCRIPTION" content=" Learn how to grant assemblies permissions to perform operations

with external entities such as the file system, registry, UIs, and more.">

<meta name="Author" content=" Juval Löwy">
<meta name="Issue" content="November 2002">
<!-- End META Tags -->

RESOURCES TAG & METATAGS

<title>Visual Studio Magazine – Black Belt - Secure Access By .NET Code-

Resources</title>
<!-- Start META Tags -->
<meta name="Category" content=".NET">
<meta name="Subcategory" content="C#, Visual Basic .NET">
<meta name="Keywords" content=".NET, C#, Visual Basic .NET, security permission,
security evidence, security policy, permission sets, evidence, security, security
permission stack walk, custom permission set, code group">
<meta name="DESCRIPTION" content=" Additional information about .NET security provisions.">
<meta name="Author" content=" Juval Löwy">
<meta name="Issue" content="November 2002">
<!-- End META Tags -->

Overline:

B l a c k B e l t

Byline:
By Juval Löwy

Technology Toolbox:
VB.NET
C#
SQL Server 2000
ASP.NET
XML
VB6

Configure .NET Code-

Access Security

Deck:

Learn how to grant

assemblies

permissions to

perform operations

with external entities,

and protect

your code

from abuse.

.NET component-oriented security derives from an elegant concept: using an

administration tool, you grant assemblies certain permissions to perform operations with

external entities such as the file system, the registry, the user interfaces, and so on. Using

the .NET security infrastructure, you can provide component-oriented security,

something that was difficult in the unmanaged world. This article describes the core

concepts and default policies, compatible with version 1.1 of .NET.

.NET provides multiple ways to identify which assembly to grant what permission, and

what evidence the assembly should provide to establish its identity. At runtime, whenever

an assembly tries to perform any protected operation or access a resource, .NET verifies

that the assembly and its calling assemblies have the appropriate security permissions.

 A security permission is an individual grant to perform a specific operation.

Permissions have both type and scope. A file I/O permission’s type differs from that of a

user interface permission, because they control access to different types of resources.

 A permission’s scope can be narrow, wide, or unrestricted. For example, a file I/O

permission can allow reading from a particular file. You can represent writing to the

same file with different file I/O permissions. .NET defines 19 types of permission. These

govern all the operations and recourses an application is likely to use, such as file I/O, UI,

Web access, database access, network, reflection, and other types, including special

security permissions.

 You often need a set of permissions of various scopes and types for an assembly to

function properly. .NET facilitates this by letting you create collections of individual

permissions—called permission sets. You can also use existing ones, called named

permission sets. .NET provides six of these named permission sets: Nothing, Execution,

Internet, LocalIntranet, Everything, FullTrust, and SkipVerification (see Table 1 online;

see Go Online box for details).

 .NET grants permissions to assemblies based on their identities. A security evidence is

some form of proof an assembly can provide to validate its identity. Assemblies

substantiate their identities with origin- and assembly-based security evidence.

 Origin-based evidence simply examines where the assembly is coming from,

independent of content. Standard origin-based evidence consists of code coming from the

application directory, a particular Web site, a URL, or a zone. A zone is the local

machine, an intranet, the Internet, or an explicitly trusted or untrusted Internet site.

 Assembly-based evidence does examine assembly content. It looks for a specific match

with specified criteria. The standard assembly-based evidences are a specific strong

name, publisher certificate, assembly hash, and All Code—a wild card satisfied by all

code.

 You use code groups to classify assemblies so .NET can determine which security

permissions to grant. A code group binds a single permission set to a single evidence (see

Figure 1). An assembly must satisfy a code group’s evidence to win the permissions in

the permission set associated with the code group.

 Code groups aggregate into .NET security policies. The permissions granted by a

policy to a given assembly is the union of all the individual permissions granted by the

code groups in that policy whose evidence the assembly satisfies. For example, if an

assembly satisfies the evidences of code groups A, B, and C, but not the evidences

required by code groups D and E, it is granted only the union of permissions A, B, and C

(see Figure 2).

Compose Security Policies

.NET lets you provide multiple security policies with different scopes. You can apply

restrictive policies to specific cases, such as individual users or machines with limited

privileges. Then apply more permissive policies to other machines and users in an

organization.

 One policy may grant an assembly permission denied by another policy. But because

all policies must concur on the allowed permissions, the actual permissions .NET grants

to an assembly is the intersection of all permissions granted by all the security policies.

 There are four types (or levels) of security policies. An Enterprise policy affects all

machines in the Enterprise. Each machine has a Machine policy specific to that machine.

The User policy affects one user. And an Application Domain policy applies only to code

running in a specific application domain.

 You configure Application Domain policies only programmatically. Typically, you

place more restrictive policies downstream, more liberal policies upstream. This allows

overall flexibility with granular security policy, tight in some places and looser in others.

 When .NET loads an assembly, it computes the permissions to grant that assembly. For

each security policy, .NET aggregates the permissions from the code groups satisfied in

that policy. Then .NET intersects the policies to find the combined overall collection of

permission to grant the assembly. It calculates that set of permissions only once (per app

domain). The calculated permission persists in memory as long as the assembly remains

loaded.

 Whenever an assembly calls a .NET framework class, that class may demand

assurance from .NET that the assembly calling it has the security permission required to

access it. For example, file I/O classes demand appropriate file I/O permission for that

access. If the assembly lacks the appropriate security permission, .NET throws a security

exception.

 So far so good. But suppose a malicious assembly, which lacks permissions to access a

class such as FileStream, calls a benign trusted assembly to do its dirty work. Well, the

.NET architecture can thwart such attacks. Whenever a class demands security

permission checks, .NET traverses the entire call stack, making sure every assembly up

the call chain has the required permissions. This is called the security permission stack

walk. And if .NET finds an assembly without permissions during the stack walk, .NET

immediately aborts the stack walk and throws an exception. In future articles I’ll show

you how to demand security permission stack walks in your own classes.

.NET gives you two ways to configure a code access security policy: caspol.exe, a

command-line utility, or the .NET Configuration tool, both with comparable capabilities.

Use the .NET Configuration tool to configure security and export the security policies to

other machines. Use caspol.exe to make dynamic changes during installation.

Administer Your Security Policies

The .NET admin tool has a Runtime Security Policy folder. Once expanded, the folder

contains an item for each policy: Enterprise, Machine and User. Each policy item has

subfolders, containing its code groups and permission sets (see Figure 3). Each security

policy is stored in a dedicated XML-formatted security configuration file. The .NET

Configuration tool merely provides a visual editor for those files.

 The Permission Sets folders in all three policies contain the same set of named

permission sets. Both the Enterprise and the User policies contain a single code group,

All_Code, by default. This group uses the All Code evidence with the FullTrust

permission set, so all assemblies are unrestricted.

 The Machine policy has a single root code group, also called All_Code, that uses the

All Code evidence with the Nothing permission set. By itself it grants nothing, and

instead relies on the nested code groups to grant permissions.

 The My_Computer_Zone code group uses the Zone evidence, with the zone set to My

Computer, granting the FullTrust permission set. Consequently, all code coming from the

local computer gets full trust. The My_Computer_Zone code group has two nested child

code groups, Microsoft_Strong_Name and ECMA_Strong_Name (see Figure 3). These

nested code groups use the Strong Name evidence (with the value set to the Microsoft

public key) and ECMA public key respectively. Both these nested code groups use the

FullTrust permission set, granting unrestricted access to any assembly originating from

Microsoft or ECMA, regardless of its zone.

 The LocalIntranet_Zone code group uses the zone evidence with a value set to the

Local Intranet zone. The permission set is LocalIntranet. The problem is that the

LocalIntranet permission set doesn’t grant Web access or File I/O or Directory Services

permission. So an assembly originating in the Intranet may not function properly if it

requires access to its original site or its install directory.

 To compensate, the LocalIntranet_Zone dode group contains two nested code groups

(see Figure 3). The Intranet_Same_Site_Access code group lets code access its site of

origin, and the Intranet_Same_Directory_Access code group lets code access its original

install directory.

The Internet_Zone code group uses the zone evidence, with a zone set to Internet. The

permission set used is Internet. The Internet_Zone code group has a child code group

called Internet_Same_Site_Access (see Figure 3), allowing code coming from a site to

connect to its site of origin.

The Restricted_Zone code group uses the zone evidence, with a zone set to Untrusted

Sites and the permission set Nothing. The Trusted_Zone code group uses the zone

evidence, with a zone set to Trusted Sites. The permission set used is the Internet

permission set. The Trusted_Zone code group has a child code group called

Trusted_Same_Site_Access granting code coming from a trusted site permission to

connect to its site of origin.

Build Custom Permission Sets

You can define custom permission sets and compose granular permissions suitable for a

particular need. Create a new permission set by right-clicking on the Permissions Sets

folder and selecting New… to bring up the Create Permission set wizard. The first screen

lets you name the new permission set and provide a description. Click Next >, to assign

individual permissions to the new permission set (see Figure 4).

 When you add a permission type from the left pane, a dedicated dialog for that type

appears, allowing you to add individual permissions of that type. Suppose you need the

new permission set to grant file I/O permissions to read the C drive, and full access to

C:\temp. Select File I/O on the left pane of the dialog; click Add >> to bring the file I/O

permission setting dialog.

 The dialog has a grid where each line corresponds to a single file I/O permission. You

can also grant unrestricted access to the file system. Configure the required setting and

click OK to return to the previous dialog and click Finish. You can now use this

permission set with any code group in the policy.

 You can modify existing code groups or create new ones. Maybe you want to create a

new code group that grants all assemblies signed with your organization’s public key the

Everything permission set. This can be handy when different teams use each other’s

assemblies across an intranet. The logical place for the new code group is in the Machine

policy, under the My_Computer_Zone code group. Highlight the My_Computer_Zone

code group, click on it and select New… from the context menu. In the Create Code

Group dialog, name the new code group and click Next >.

 In the “Choose a condition” type dialog go to the condition type textbox. Select Strong

Name from the drop-down combo box (see Figure 5). This changes the lower part of the

dialog to reflect the value of the requested strong key. Provide the public key value by

importing it from an already-signed assembly. Click the Import… button to -browse to a

signed assembly (either an EXE or a DLL) and select it. The wizard reads the public key

from the assembly’s manifest and populates the Public Key textbox.

 Click Next > to proceed to the next dialog, where you need to assign a permission set

to the new code group. You can use any existing permission set in the policy by selecting

the set from the drop-down combo box. Select Everything, click Next >, and Finish in the

next dialog. The new code group is now part of the policy.

About the Author:

Juval Löwy is a software architect and principal of IDesign, a .NET consulting and

training company. He’s also a Microsoft Regional Director, the .NET California Bay

Area User Group Program committee chairman, and a conference speaker. This article

derives from his upcoming book on .NET components (O'Reilly). Contact Juval at

www.idesign.net

Pullquotes:

The permissions .NET grants to an assembly is the intersection

of all permissions granted by all the security policies.

If .NET finds an assembly without permissions during the

security permission stack walk, .NET immediately aborts the

stack walk and throws an exception.

Figure Captions:

Figure 1:

Bind Evidence to a Permission Set.
.NET security is based on granting assemblies permissions to perform operations on the
file system, the registry, the user interfaces, and other external entities. You use code
groups to classify assemblies so .NET can determine which security permissions to
grant. A code group binds a single permission set to a single evidence. When an
assembly identity matched the evidence, the assembly is granted the permission in the
permission set.

Figure 2:

Implement Security With Policies.
Code groups aggregate into .NET security policies. The permissions granted by a policy
to a given assembly is the union of all the individual permissions granted by the code
groups in that policy whose evidence the assembly satisfies. For example, if an
assembly satisfies the evidences of code groups A, B, and C, but not the evidences
required by code groups D and E, it is granted only the union of permissions A, B, and C

Figure 3:

Administer security With the .NET Configuration Tool.
The common language runtime’s code access security system determines an
assembly’s permissions to access protected resources. Each permission set granted to
an assembly is based on the assembly’s evidence (such as its URL or strong name). .
Each policy has a folder for permission sets and code groups, as you can see in the
Runtime Security Policy folder.

Figure 4:

Create Custom Permission Sets.
Each permission set is a collection of many different permissions to various resources
on the computer. Select the permissions you’d like to have in this permission set. Each
permission type has a dedicated permission configuration dialog, letting you set the
permission value.

Figure 5:

Choose an Evidence Type and Value for a Code Group.
The membership condition determines whether or not an assembly meets specific
requirements to get the permissions associated with a code group. Each evidence type
has a dedicated dialog letting you specify a value, such as public key for a strong name
evidence.

